
Pyexp - Python for Experiments - #1 TACO/TANGO Workshop 14-15 November 2001

Pyexp - Python for Experiments

by Laurent Pointal
laurent.pointal@lure.u-psud.fr

S.I.E. (Service Informatique Expériences)

LURE (CNRS/CEA/MENRT)

I presented the Pyexp project in may 1999 at the first Python France Day. Since, some
pyexp tools were developed, but other priorities have delayed the project itself. Now,
it is a priority for some experiments at LURE.

Pyexp - Python for Experiments - #2 TACO/TANGO Workshop 14-15 November 2001

Differents Levels
" Devices driving

" Graphical User Interface

" Experiment control

ñ User scripting

ñ Abstraction with physical elements

ñ Hidden parallel processing and error management
framework

Device driving
- Use of existing device control systems.
- Easy development of controlers for new devices.

GUI
- Easy interface construction 'kit' (eventually accessible to advanced users), with a set of

reusable dialogs to select experiment parameters for standard experiments.
- Complete application to display and plot data during acquisition and manipulate them.

Experiment control ⇒ Python scripts
- Users can write their own scripts ; script macros must allow to easily express experiment

processing structures (loops nesting...) and parameters.
- Standard scripts for standard experiments, with a link to get parameters from GUI if

available.
- Abstraction with physical elements make scripts more reusable.
- Modern computing tools (multithreading...) are efficient, but complex to understand and

use for simple scientific programmers.
- Link with device driving layer.
- Run on different operating systems.

The right tool at the right place.

Pyexp - Python for Experiments - #3 TACO/TANGO Workshop 14-15 November 2001

Devices Driving

TACO
device
server

TANGO
device
server

Pyexp Device Controler Objects

TACO
python

CORBA
OmniORBpy

GPIB
module

GPIB
device

Local Device
(DAQ cards, CCDs...)

Libraries
wrappers ...

Win32-COM
...

devicedevice device

From a base device controler class, we define subclasses adapted to different devices
protocols and/or kind.

Python is an excellent glue language, it has interfaces with most of existing protocols. And it
is possible to write extension module wrappers for specific libraries (ex. we did it for
IEEE488.1 functions of the National Instrument GPIB library).

With that structure, we develop device controler classes in Python, they can directly control
devices, or they can link to existing device servers. New devices management can take
place in Python code or in TACO or TANGO device servers.

Note: We have written a configuration tool based on configuration URLs (coding the
protocol to use and the location to access configuration data) and 'entity' names
at these locations, which allow to write code independently of the configuration
system(s) used on the experiment. With that tool, pyexp can easily use any (write
an adaptation class) and multiple (use different configuration protocols)
configuration systems , and is then more adaptable and scalable.

Pyexp - Python for Experiments - #4 TACO/TANGO Workshop 14-15 November 2001

GUI
Dialogs Graphics

IgorPro
(CORBA XOP)

Pyexp Data Acquisition Scripts

Send Data

Other...

Tkinter
wxPython

pyGtk
Other graphic

libraries...

Receive Commands/Parameters
Return Status/Data

Java

Choice to be done..

Technology choices for GUI are not closed.

We tries to consider the GUI side of the experiment as an external and optional tool.

It it possible to directly use graphic libraries which have Python binding, or even to link with
Java programs via a CORBA interface (benefit of Java RAD tools, beans…).

For plotting, in place of developing new graphical scientific applications, it is possible to
build an interface with existing ones. We did this for Igor Pro on Windows, where an
XOP (Igor plugin module) creates a CORBA object. Client data acquisition scripts
transmit data to this object, and scientists can use Igor as usually (data come in
'magically' in Igor waves).

Pyexp - Python for Experiments - #5 TACO/TANGO Workshop 14-15 November 2001

Device Driving

GUI

Pyexp Scripts (next slide)

e

i0 i1

slitset

bragg trans

mono

image

offsetgap

ms1 ms2

motor
controler 2

counter
controler 1

motor
controler 1

ccd
controler 1

Physical Elements (pseudo)

Physical Elements

Groups

Device Controlers

The physical element abstraction allow users to deal with natural things in their scripts. They
can be linked to device controlers, or to groups, or be standalone (ex. a software
timer).

Groups are objects built to manage complex equipements. They can offer access for
multiple physical elements to control different parameters of the equipment (like the
slitset group). On the other side, they can have to drive multiple physical elements
(like the mono and slitset groups). We can have groups for other things like
diffractometers, hexapodes....

Physical elements (pe), groups and device controlers are all 'actors'. With their
relations, they build a non cyclic oriented graph of actors. When operations are
requested on one or more pe, we process by steps:

ï we pass the request among actors, starting from the concerned pe, and we get
back action requests for a list of final target actors.

ï action requests are grouped by target, and lists are checked (remove duplicates,
and ask targets to check coherency).

ï each target process its list of actions in a separate thread.

Pyexp - Python for Experiments - #6 TACO/TANGO Workshop 14-15 November 2001

Scripts

rsd = [e,i0,i1]
s = Loop (5) (

Loop (evalues) (
Set (e),
Measure (i,i1),
Read (rsd),
Save (rsd),
Display (rsd)
)

)
s.run()

Scripts macro instructions are subclasses of a ScriptNode class.

We define __call__ method of ScriptNode objects to set up a tree of nodes. For
users the open parenthesis is like the beginning of a nested bloc of the previous macro
instruction. Inside parenthesis, indentation has no meaning, it only makes script more
readable.

Loop can iterate on sequence objects, created from subclasses of a DataSequence
class. Subclasses can manage values of the iteration as they want (constant value, linear
or non-linear progression, read from a file, computation from a physical element
value…).

Nodes can get/set values in their parent's nodes (ex. Set search for the nearest 'iterval'
value in its parent nodes to find the target for e).

Node objects have names, which allow to identify any macro in the script. In their code,
they can request that 'patchs' be called (mimic the Spec cdef).

Normal macros processing can be modified with requests relatives to nodes (ex. when
loosing light beam, pause until it come back, and request to restart last scan loop) - but
that must be in the macros code.

Pyexp - Python for Experiments - #7 TACO/TANGO Workshop 14-15 November 2001

Example : a Loop node

attributes:
name = "scan"
parent = <reference to a node>
values = <the LinearSeq>
iterval = <set during run>
index = <set during run>

run code:
self.patchs("befnode")
self.index = 0
self.values.rewind()
while not self.values.finished():

self.patchs("befiter")
self.values.setindex(self.index)
self.iterval=self.values[self.index]
self.callsubnodes()
self.patchs("aftiter")
self.index += 1

self.patchs("aftnode")

Built with: Loop(LinearSeq(10000.0,1000,2.0),name="scan")

Patchs Table
node part patch

*
scan
scan
set
...

befnode
befiter
aftiter
*
...

patch1
patch2
patch3
patch4
...

Here is an example for a Loop node.

At construction, the node may also receive an integer and use it to build a simple stepping
sequence (use of Python dynamic typing).

Code to reset the loop from an external request, to process lists of sequences… must be
added.

Patchs are not directly associated to nodes but to nodes names and nodes parts (like
"befiter") which identify where in the node script the patchs are called). With that
association by names, nodes are called whatever be the script. Tools allow to manage
patchs (insert/remove, enable/disable, change calling order…).

Pyexp - Python for Experiments - #8 TACO/TANGO Workshop 14-15 November 2001

Project Status
" Base tools are written (multithreading and synchronization,

configuration data access, scientific data plot in Igor Pro...).

" Physical elements, groups and device controlers are
well in progress.

" GUI tools are still not fixed.

" Macro scripts are planned to have base version
running on march 2002 for one experiment.

Base tools are already used on a first experiment program written with Python (but
without pyexp itself).

Dynamic construction and links between physical elements, groups and device controlers
objects are done. We are working on preparing and transmitting action commands
between these objects.

The choice of tools for GUI must be done while thinking of SOLEIL future experiments.

The march 2002 experiment will be our first demonstration of pyexp, with scientists using
the software on a running experiment.

We hope this first test will make pyexp a good candidate when the data acquisition
software choice will be done for SOLEIL.

