Pyexp - Python for Experiments - #1 TACO/TANGO Workshop 14-15 November 2001

Pyexp - Python for Experiments

by Laurent Pointal

| aurent. pointal @ure. u-psud. fr

S.|.E. (Sevice Informatique Expériences)
L URE (CNRSICEA/MENRT)

| presented the Pyexp project in may 1999 at the first Python France Day. Since, some
pyexp tools were developed, but other priorities have delayed the project itself. Now,
it isapriority for some experiments & LURE.



Pyexp - Python for Experiments - #2 TACO/TANGO Workshop 14-15 November 2001

Differents Levels
* Devicesdriving
* Grgphicd User Interface
~ Experiment control
A User scripting
A Abgtraction with physica dements

A Hidden pardld processng and error management
framework

Devicedriving
- Useof exigting device control systems.
- Easy development of controlers for new devices.

GUI

- Easy interface congtruction 'kit' (eventualy accessible to advanced users), with a set of
reusable dialogs to select experiment parameters for standard experiments.

- Complete gpplication to display and plot data during acquisition and manipulate them.

Experiment control b Python scripts

- Users can write their own scripts ; script macros must alow to easily express experiment
processing structures (loops nesting...) and parameters.

- Standard scripts for tandard experiments, with alink to get parameters from GUI if
available.

- Abdtraction with physical e ements make scripts more reusable.

- Modern computing tools (multithreading...) are efficient, but complex to understand and
use for smple scientific programmers.

- Link with device driving layer.

- Run on different operating systems.

Theright tool a the right place.



Pyexp - Python for Experiments - #3 TACO/TANGO Workshop 14-15 November 2001

Devices Driving

Pyexp Device Controler Objects
TACO CORBA GPIB Libraries
python || OmMniORBpy || module wrappers

A v 4

TACO TANGO .
device device Win32-COM
sve aver

. . GPIB Locd Device i
device device device (DAQ cards, CCDs...) device

From a base device controler class, we define subclasses adapted to different devices
protocols and/or kind.

Python is an excellent glue language, it has interfaces with most of existing protocols. And it
is possible to write extension module wrappers for specific libraries (ex. we did it for
|EEE488.1 functions of the Nationd Instrument GPIB library).

With that structure, we develop device controler classesin Python, they can directly control
devices, or they can link to existing device servers. New devices management can take
place in Python code or in TACO or TANGO device servers.

Note: We have written a configuration tool based on configuration URLs (coding the
protocol to use and the location to access configuration data) and 'entity’ names
at these locations, which allow to write code independently of the configuration
system(s) used on the experiment. With that tool, pyexp can easily use any (write
an adaptation class) and multiple (use different configuration protocols)
configuration systems, and is then more adaptable and scalable.



Pyexp - Python for Experiments - #4 TACO/TANGO Workshop 14-15 November 2001
Dialogs Choiceto be done.. Graphics
Tkinter oorPr
OrPro
wxPython (CO%BA XOP)
pyGtk « R
Oth ic | g
Iit?rra?ir:h...lc Other..
Java
Receive Commands/Parameters Send Date
Return Status/Data
Pyexp Data Acquigtion Scripts

Technology choices for GUI are not closed.
Wetriesto consder the GUI side of the experiment as an external and optiona tool.

It it possible to directly use graphic libraries which have Python binding, or even to link with
Java programs viaa CORBA interface (benefit of Java RAD tools, beans...).

For plotting, in place of developing new graphica scientific gpplications, it ispossbleto
build an interface with existing ones. We did thisfor Igor Pro on Windows, where an
XOP (Igor plugin module) creates a CORBA object. Client data acquisition scripts
transmit data to this object, and scientists can use Igor as usualy (datacomein
'magicdly’ in Igor waves).



Pyexp - Python for Experiments - #5 TACO/TANGO Workshop 14-15 November 2001
GUI
Pyexp Scripts(next slide)
Physical Elements (pseudo)
e of f set
Groups \4
nono slitset
Physical Elements
[io|[i1] |[bragg|[trans| |image | [nsl| [ns2|
Y v v ' v { v
count er not or ccd nmot or
controler 1 controler 1||controler 1}]|controler 2
Device Controlers DeviceDrivi ng

The physicd dement abstraction alow usersto ded with naturd thingsin their scripts. They
can be linked to device controlers, or to groups, or be standalone (ex. a software
timer).

Groups are objects built to manage complex equipements. They can offer access for
multiple physcad dementsto control different parameters of the equipment (like the
sl it set group). On the other Sde, they can have to drive multiple physicd dements

(likethemrono and sl i t set groups). We can have groups for other things like
diffractometers, hexapodes....

Physical elements (pe), groups and device controlers are all ‘actors. With their
relations, they build a non cyclic oriented graph of actors. When operations are
requested on one or more pe, we process by steps:

T we passthe request among actors, starting from the concerned pe, and we get
back action requests for a list of final target actors.

T action requests are grouped by target, and lists are checked (remove duplicates,
and ask targets to check coherency).

T each target processitslist of actionsin a separate thread.



Pyexp - Python for Experiments - #6 TACO/TANGO Workshop 14-15 November 2001

Scripts

rsd = [e, 10,il]

s = Loop (5) (

Loop (eval ues) (
Set (e),
Measure (i,i1),
Read (rsd),
Save (rsd),

Di splay (rsd)
)

s.run()

Scripts macro ingtructions are subclasses of aScr i pt Node class.

Wedefine __cal | __ method of Scri pt Node objects to set up atree of nodes. For
users the open parenthesisis like the beginning of a nested bloc of the previous macro
ingruction. Indde parenthes's, indentation has no meaning, it only makes script more
readable.

Loop can iterate on sequence objects, created from subclasses of aDat aSequence
class. Subclasses can manage vaues of theiteration as they want (congtant value, linear
or non-linear progression, read from afile, computation from a physica eement
vaue...).

Nodes can get/set vaduesin their parent's nodes (ex. Set search for the nearest ‘iterval'
vauein its parent nodes to find the target for e).

Node objects have names, which alow to identify any macro in the script. In their code,
they can request that 'patchs be called (mimic the Spec cdef).

Norma macros processing can be modified with requests relatives to nodes (ex. when
loosing light beam, pause until it come back, and request to restart last scan loop) - but
that must be in the macros code.



Pyexp - Python for Experiments - #7 TACO/TANGO Workshop 14-15 November 2001

Example : aLoop node

Built with: Loop( Li near Seq( 10000. 0, 1000, 2. 0), nane="scan")

attributes:

name = "scan"

parent = <referenceto anode>

val ues = <the LinearSegp>

i terval = <setduringrun>

i ndex = <setduringrun> Patchs Table
run code:

sel f. pat chs(" bef node") node part paCh

self.index =0 \ * bef node | patchl

sel f. val ues. rew nd() scan befiter pat ch2
whi l e not self.val ues.fini W Sean ortita | batchs
sel f. patchs("befiter") set * pat ch4
sel f. val ues. seti ndex(sel f. i ndex) .. .. ce
sel f.iterval =sel f.val ues[ sel f.index]
sel f. cal | subnodes()
sel f.patchs("aftiter")

self.index += 1
sel f. pat chs("af t node")

Hereisan examplefor aLoop node.

At congtruction, the node may aso receive an integer and use it to build asmple stepping
seguence (use of Python dynamic typing).

Code to reset the loop from an externa request, to process lists of sequences... must be
added.

Patchs are not directly associated to nodes but to nodes names and nodes parts (like
"befiter") which identify where in the node script the patchs are cdled). With that
association by names, nodes are called whatever be the script. Tools allow to manage
patchs (insert/remove, enable/disable, change calling order ...).



Pyexp - Python for Experiments - #3 TACO/TANGO Workshop 14-15 November 2001

Project Status

 Basetools are written (muttithreading and synchronization,
configuration data access, scientific dataplot in Igor Pro...).

- Physicd dements, groups and device controlers are
well in progress.

~ GUI tools are il not fixed.

* Macro scripts are planned to have base verson
running on march 2002 for one experiment.

Base tools are aready used on afirst experiment program written with Python (but
without pyexp itsdlf).

Dynamic congtruction and links between physical eements, groups and device controlers
objects are done. We are working on preparing and transmitting action commands
between these objects.

The choice of tools for GUI must be done while thinking of SOLEIL future experiments.

The march 2002 experiment will be our first demondtration of pyexp, with scientists using
the software on a running experiment.

We hopethisfirst test will make pyexp agood candidate when the data acquisition
software choice will be done for SOLEIL.



